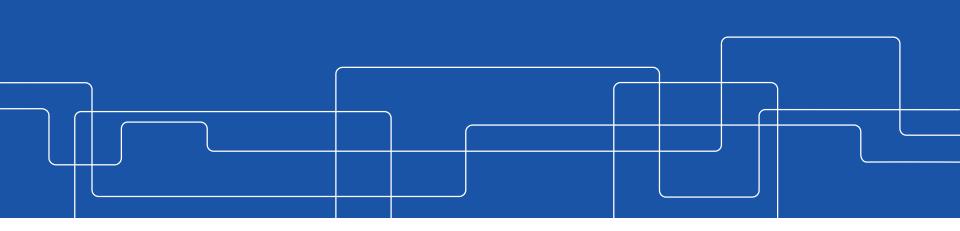


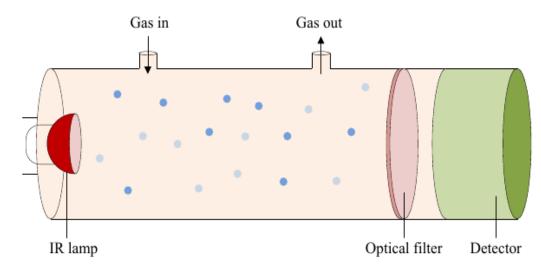
Belief Function Fusion based Self-calibration for Non-dispersive Infrared Gas Sensor

Yang You and Tobias Oechtering Division of Information Science and Engineering, EECS KTH, Royal Institute of Technology, Sweden



NDIR CO₂ Sensor

- Sensor Mechanism:
 - Different CO₂ molecules → Absorption of light with different wavelengths
 - Attenuation of light intensity → Absorption of the measured CO₂
 → CO₂ concentration
- Measurement process:
 - Abs = f(zero, IR, T)
 - $CO_2 = L(R Abs)$
 - *Abs*: Absorption
 - IR: The amount of received IR light
 - Zero: Zero coefficient
 - R: Reference level



Drift Analysis of NDIR Sensor

- Zero coefficient:
 - Calibration parameter used for adjusting the sensor baseline offset
- Why there is drift?
 - IR signal varies according to time, temperature and/or other factors
 - But the same zero coefficient is being used for calculating absorption.
 - Lead to a measurement error
- Sensor calibration requires adjusting the zero coefficient
 - Build a stochastic model of the true zero coefficient
 - Estimate the true zero coefficient at any time given noisy observation

Automatic Baseline Correction (ABC)

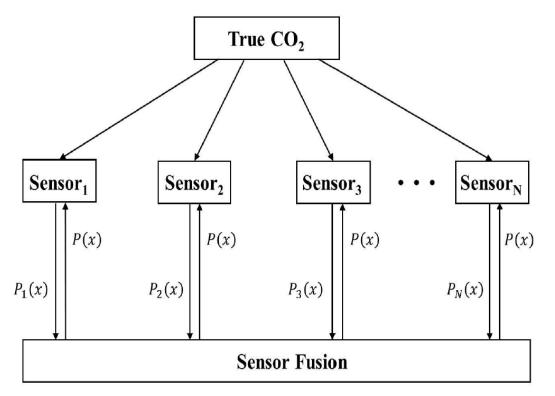
- In each calibration period:
 - The sensor is calibrated to a fixed value which is assumed to be the fresh air CO_2 concentration
- Fails when the sensors never get exposed to fresh air in a calibration period
 - E.g., in mega-cities
- Need to design more robust and smart self-calibration algorithms

System Model and Problem Formulation

- An NDIR sensor system:
 - *N* sensors measure time-varying *CO*₂ level
 - Same environment: Same target for all sensors
 - Posterior distribution of the current true CO₂ level given historical measurements at each sensor
 - Via hidden Markov model, our previous work [1]
 - Named as belief function in this work.
- Sensor calibration:
 - Fuse the belief functions of each sensor.
 - The fused belief function can be adopted as the new belief function by all sensors

System Model and Problem Formulation

- True CO_2 level: $x \in \overline{X}$ • $\overline{X} = \{x_1, x_2, \dots, x_M\}$
- Belief function of sensor *i* on the true CO_2 level: $P_i(x)$
- Fused belief function: P(x)



Belief Function Fuse via Dempster's Rule

- Assumption: Belief functions for all *N* sensors are reliable
- Two sensor fusion case:
 - Consider *sensor*_i and *sensor*_j

$$(P_i \oplus P_j)(x_k) = \frac{1}{1-F} P_i(x_k) P_j(x_k), \forall x_k \in \overline{X}$$

•
$$F = \sum_{x_m, x_n \in \overline{X}, x_m \neq x_n} P_i(x_m) P_j(x_n)$$

• *N* sensors fusion case:

$$P(x_k) = (P_1 \oplus P_2 \oplus \dots \oplus P_N)(x_k)$$

= $(P_1(x_k)P_2(x_k) \dots P_N(x_k))/F', \forall x_k \in \overline{X}$

- $F' = \sum_{x_m \in \overline{X}} P_1(x_m) P_2(x_m) \dots P_N(x_m)$
- P(x) is then further used by all sensors

Belief Function Fusion via Wasserstein Distance based Weighted Average

- Dempster's rule fails when the belief functions highly conflict with each other.
 - Need some pre-processing of the original belief functions
 - Weighted average approach
- Wasserstein distance:
 - Two random variables *Y* and *Z* with distribution P_Y and P_Z $W_2(P_Y, P_Z) =$

$$\sqrt{P_{YZ}:\sum_{z} P_{YZ}=P_{Y},\sum_{y} P_{YZ}=P_{Z}} \sum_{y\in\mathcal{Y},z\in\mathcal{Z}} |y-z|^{2} P_{YZ}(y,z).$$

• Distance between belief functions of *sensor_i* and *sensor_j*

$$- W_2\left(P_i(x), P_j(x)\right), \forall i, j \in \{1, 2, \dots, N\}$$

Belief Function Fusion via Wasserstein Distance based Weighted Average

• Normalized distance in interval [0,1]:

$$\hat{W}_2(P_i(x), P_j(x)) = \frac{2 \times W_2(P_i(x), P_j(x))}{\sum_i \sum_j W_2(P_i(x), P_j(x))}$$

• Similarity:

$$S(P_i(x), P_j(x)) = 1 - \hat{W}_2(P_i(x), P_j(x))$$

• Support degree (importance of the belief function):

$$Supp(P_i(x)) = \sum_{j=1, j \neq i}^N S(P_i(x), P_j(x))$$

Belief Function Fusion via Wasserstein Distance based Weighted Average

- Calculation of the weight: $\alpha_i = \frac{Supp(P_i(x))}{\sum_{i=1}^{N} Supp(P_i(x))}$
- Weighted average of *N* belief functions: $\hat{P}(x) = \sum_{i=1}^{N} \alpha_i P_i(x)$
- Fused belief function:

$$P(x) = (\hat{P} \oplus \hat{P} \oplus \dots \oplus \hat{P})(x)$$

• The operator \oplus is applied for N - 1 times

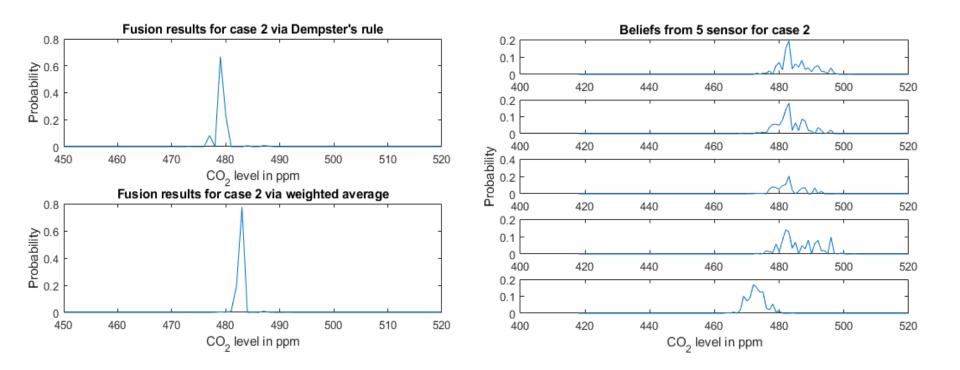
Numerical Results

• Case 1: All belief functions are consistent, no strong conflicts.



Numerical Results

• Case 2: One sensor has strong conflict with the other sensors.



Conclusions and Future Works

- Conclusions:
 - The general belief function fusion framework can work well in the case where no strong conflict happen
 - Weighted average approach has better performance when dealing with conflicts
- Future works:
 - Expanding our numerical experiments to more datasets and scenarios to check the robustness of our algorithms
 - Comparing the current proposed distance metric to the existing distance metrics.