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NDIR 𝑪𝑶𝟐 Sensor

• Sensor Mechanism:

• Different gas molecules Absorption of light with different 

wavelengths (Beer-Lambert law [1])

• Attenuation of light intensity       Absorption of the measured CO2

CO2 concentration

• Measurement process:

• 𝐴𝑏𝑠 = 𝑓 𝑧𝑒𝑟𝑜, 𝐼𝑅, 𝑇

• 𝐶𝑂2 = 𝐿 𝑅 − 𝐴𝑏𝑠

• 𝐴𝑏𝑠: Absorption

• IR: Received IR light

• Zero: 

Calibration coefficient

• R: Reference level 
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[1]. D. F. Swinehart, “The beer-lambert law,” Journal of Chemical

Education, vol. 39, no. 7, pp. 333, 1962.



Drift Analysis of NDIR Sensor

• Zero coefficient:

• Calibration parameter used for adjusting the sensor 

baseline offset

• Why is there a drift?

• IR signal varies with time, temperature and/or other 

factors

• Measurement error if same zero coefficient is being 

used for calculating absorption.

• Sensor calibration requires adjusting the zero coefficient

• Build a stochastic model of the ‘true’ zero coefficient 

• Estimate the true zero coefficient at any time given 

noisy observation
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State Of The Art - Technology

• The traditional Automatic Baseline Correction (ABC) 

algorithm [1]

• The sensor is calibrated to a fixed value which is 

assumed to be the fresh air 𝐶𝑂2 concentration

• Fails when the sensors never get exposed to fresh air 

in a calibration period

– E.g., in mega-cities

• Need to design more robust and smart self-calibration 

algorithms

4[2]. “TN-011,” Tech. Rep., SenseAir, 2000.



State Of The Art - Research

• Data-dirven modeling aims to find relationships between the 

system state variables (input and output) without explicit 

knowledge of the physical behavior of the system [3].

• Powerful tool for smart sensor self-calibration [4-7].

• [3]. D. Solomatine, L. M. See, and R. J. Abrahart, “Data-driven modelling: concepts, approaches 

and experiences,” in Practical hydroinformatics, pp. 17–30. Springer, 2009

• [4]. N. Roy and S. Thrun, “Online self-calibration for mobile robots,”in Proceedings 1999 IEEE 

International Conference on Robotics and Automation (Cat. No.99CH36288C), May 1999, pp. 

2292–2297 vol.3.

• [5]. A. A. Boechat, U. F. Moreno, and D. Haramura Jr, “On-line calibration monitoring system 

based on data-driven model for oil well sensors,” IFAC Proceedings Volumes, vol. 45, no. 8, pp. 

269–274, 2012.

• [6]. T. Wissel, B. Wagner, P. Stber, A. Schweikard, and F. Ernst, “Datadriven learning for 

calibrating galvanometric laser scanners,” IEEE Sensors Journal, vol. 15, no. 10, pp. 5709–5717, 

Oct 2015.

• [7]. D. Wang, J. Liu, and R. Srinivasan, “Data-driven soft sensor approach for quality prediction 

in a refining process,” IEEE Transactions on Industrial Informatics, vol. 6, no. 1, pp. 11–17, Feb 

2010.
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State Of The Art - Research

• Machine learning approaches provide increasing levels of

automation and improved accuracy by discovering and 

exploiting regularities in the training data.

• Research on data-driven sensor self-calibration have

combine machine learning approaches [8],[9].

• In this paper, we follow the idea of combing the concept of 

data-driven modeling and approaches of machine learning.

• [8]. L. Wijeratne, D. Kiv, A. Aker, S. Talebi, and D. Lary, “Using machine learning for the 

calibration of airborne particulate sensors,” Sensors, vol. 20, no. 1, pp. 99, 2020.

• [9]. W. Xie and P. Bai, “A pressure sensor calibration model based on support vector 

machine,” in 2012 24th Chinese Control and Decision Conference (CCDC). IEEE, 2012, pp. 

3239–3242.
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Modeling the Drift

• Utilize the hidden Markov model (HMM) to build a data-

driven self-calibration system for NDIR sensors.

• Build a joint probalistic model on time series of CO2 

measurements, temperature and ‘true’ zero coefficients

• Learn the transition behavior of ‘true’ zero coefficient 

• Infer the ‘true’ zero coefficient at different time steps
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Hidden Markov Model

• Brief introduction on HMM:

• Probalistic model composed of observation space and hidden 

state space (state space should be discrete)

8

Main Tasks of HMM:

Learning & Inference



HMM setting for ZERO Coefficient Inference

• Implementation:

• Model:

• ‘True’ zero coefficients are quantized to different integer levels, i.e., 

‘true’ zero coefficients within the same range will be quantized to the 

same level.

• The change of temperature Δ𝑇𝑡 = 𝑇𝑡 − 𝑇𝑡−1 is also quantized to 

certain different levels

• We set the pair of quantized ‘true’ zero coefficients and temperature 

change as the hidden state of HMM.

• Observation sequence:  CO2 measurements

9



HMM setting for ZERO Coefficient Inference

• Notations:

• Hidden state at time 𝑡 𝑋𝑡 = (𝑍𝐸𝑅𝑂𝑡, Δ𝑇𝑡)

• Observation at time 𝑡 𝑌𝑡 = 𝐶𝑂2 𝑡

• Definitions (with two-dimensional hidden state be (𝑍𝐸𝑅𝑂𝑡,
Δ𝑇𝑡+1)):

• Transition probability: 𝑃 𝑥𝑡+1 𝑥𝑡
• Emission probability: 𝑃(𝑦𝑡|𝑥𝑡)

• Prior distribution of the hidden state: 𝑃(𝑥1)

• Posterior distribution of the hidden state: 𝑃(𝑥𝑡|𝑦1
𝑇)

• Assumption:

• The temperature dependency of the model is time independent, 

i.e., 𝑃 𝑥𝑡+1 𝑥𝑡 and 𝑃 𝑦𝑡 𝑥𝑡 are time-invariant
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Unsupervised learning of HMM

• Unsupervised training:

• Exact values of true zero coefficients are always hard to know (only with 

some prior knowledge). 

• Baum-Welch algorithm [10]:

• Find an approximation to the maximum likelihood estimate:

• 𝜆 denotes the underlying paramters of the HMM, i.e., transition

probability, emission probability, and prior distribution.

• { መ𝜆 1 , መ𝜆 2 , … } denote the sequential parameters estimates

• Notice that we only apply the Baum-Welch algorithm to a subsequence

𝑦𝐿 instead of the whole sequence 𝑦𝑇 for computational simplicity reason

11[10]. C. M. Bishop, Pattern recognition and machine learning, springer, 2006.



Inference of ZERO coefficient 

• Viteribi Decoding:

• Maximum a posterior estimation:

• Notice 𝑋𝑡 = (𝑍𝐸𝑅𝑂𝑡, Δ𝑇𝑡)

• The temperature change ΔT can be observed

• Plug sequence Δ𝑇𝑇 into the above function and only 

find the best estimate for the sequence 𝑍𝐸𝑅𝑂𝑇
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Numerical Experiments 

• Dataset:

– Research is performed using the data provided by Senseair

– The data is acquired from 10 sensors which are put in a station at highway 

E18 in Sweden

– Main content of the dataset:

• Raw CO2 measurement

• Current temperature

• Current time 

– The sampling interval is 15mins during most time:

• However, some samples are missing.

– Solution: Dataset is split into 3 subsets to make the data sequences 

included synchronized
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Numerical Experiments 

• Several initial conclusions:

• The ‘true’ zero coefficients in the dataset is within the 

range [12434,12637]

• The 𝐶𝑂2 measurement in the dataset is within the 

range [379ppm, 536ppm]

• We also provide supervised learning approach as the 

benchmark of our proposed unsupervised learning 

approach
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Experiment Setting – Supervised Learning

• High-resolution quantization:

• True zero coefficient is quantized to each integer in the range 

[12434,12637]

• 𝐶𝑂2 measurement is also quantized to each integer in the range 

[379ppm, 536ppm]

• Quantization of Δ𝑇:
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Interval Level Interval Level

<-1 -2 [0.1,0.3] 0.2

[-1,-0.7] -0.85 [0.3,0.5] 0.4

[-0.7,-0.5] -0.6 [0.5,0.7] 0.6

[-0,5,-0.3] -0.4 [0.7,1] 0.85

[-0.3,-0.1] -0.2 >1 2

[-0.1,0.1] 0



Experiment Results – Supervised learning
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Results for supervised 

learning using the data 

from 2018. 04.14-05.30 



Experiment Setting – Unsupervised 
Learning

• Low-resolution 

quantization to guarantee a 

fast convergence:

• Quantization of true 

zero coefficient:

• Quantization of 𝐶𝑂2
measurement: 

• Quantization of Δ𝑇:
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Experiment Results
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Result for unsupervised 

learning using the data 

from 2018. 04.14-05.30 

Result for unsupervised learning 

using the data from 2018. 04.14-5.30 

compared to quantized true value 



Conclusions

• The calibration parameter of the NDIR  is temperature 

dependent

• The drift of the NDIR sensor measurement can be fully 

described by the drift of the calibration parameter, i.e., true 

zero coefficient

• The self-calibration problem is formulated into a statistical 

inference problem of the true zero coefficient, both 

supervised and unsupervised HMM-based approaches are 

developed and studied.
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