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NDIR €O, Sensor

» Sensor Mechanism:

» Different gas molecules — Absorption of light with different
wavelengths (Beer-Lambert law [1])

« Attenuation of light intensity — Absorption of the measured CO,
—> CO, concentration
« Measurement process:
* Abs = f(zero,IR,T) Gosin s out
* €0, = L(R — Abs) ¥ il -
e Abs: Absorption | |
* IR: Received IR light
« Zero:
Calibration coefficient
R: Reference level

Optical filter Detector




Drift Analysis of NDIR Sensor

« Zero coefficient:

« Calibration parameter used for adjusting the sensor
baseline offset

« Why is there adrift?

* IR signal varies with time, temperature and/or other
factors

« Measurement error if same zero coefficient is being
used for calculating absorption.

« Sensor calibration requires adjusting the zero coefficient
» Build a stochastic model of the ‘true’ zero coefficient

« Estimate the true zero coefficient at any time given
noisy observation




State Of The Art - Technology

« The traditional Automatic Baseline Correction (ABC)
algorithm [1]

« The sensor is calibrated to a fixed value which is
assumed to be the fresh air CO, concentration

» Fails when the sensors never get exposed to fresh air
In a calibration period

— E.g., iIn mega-cities

* Need to design more robust and smart self-calibration
algorithms




State Of The Art - Research

Data-dirven modeling aims to find relationships between the
system state variables (input and output) without explicit
knowledge of the physical behavior of the system [3].

« Powerful tool for smart sensor self-calibration [4-7].

[3]. D. Solomatine, L. M. See, and R. J. Abrahart, “Data-driven modelling: concepts, approaches
and experiences,” in Practical hydroinformatics, pp. 17-30. Springer, 2009
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[6]. T. Wissel, B. Wagner, P. Stber, A. Schweikard, and F. Ernst, “Datadriven learning for
calibrating galvanometric laser scanners,” IEEE Sensors Journal, vol. 15, no. 10, pp. 5709-5717,
Oct 2015.

[7]. D. Wang, J. Liu, and R. Srinivasan, “Data-driven soft sensor approach for quality prediction
in a refining process,” IEEE Transactions on Industrial Informatics, vol. 6, no. 1, pp. 11-17, Feb
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State Of The Art - Research

Machine learning approaches provide increasing levels of
automation and improved accuracy by discovering and
exploiting regularities in the training data.

« Research on data-driven sensor self-calibration have
combine machine learning approaches [8],[9].

In this paper, we follow the idea of combing the concept of
data-driven modeling and approaches of machine learning.

[8]. L. Wijeratne, D. Kiv, A. Aker, S. Talebi, and D. Lary, “Using machine learning for the
calibration of airborne particulate sensors,” Sensors, vol. 20, no. 1, pp. 99, 2020.

[9]. W. Xie and P. Bai, “A pressure sensor calibration model based on support vector
machine,” in 2012 24th Chinese Control and Decision Conference (CCDC). IEEE, 2012, pp.
3239-3242.




Modeling the Drift

« Utilize the hidden Markov model (HMM) to build a data-
driven self-calibration system for NDIR sensors.

« Build a joint probalistic model on time series of CO2
measurements, temperature and ‘true’ zero coefficients

 Learn the transition behavior of ‘true’ zero coefficient

* Infer the ‘true’ zero coefficient at different time steps




Hidden Markov Model

* Brief introduction on HMM:

* Probalistic model composed of observation space and hidden
state space (state space should be discrete)

P(qt|qe—1) P(qt+1|qe) P(qis2|qi41)

hidden

Main Tasks of HMM: states
Learning & Inference




HMM setting for ZERO Coefficient Inference

* Implementation:
« Model:

« 'True’ zero coefficients are quantized to different integer levels, i.e.,
‘true’ zero coefficients within the same range will be quantized to the
same level.

« The change of temperature AT; = T; — T;_, IS also quantized to
certain different levels

« We set the pair of quantized ‘true’ zero coefficients and temperature
change as the hidden state of HMM.

« Observation sequence: CO2 measurements




HMM setting for ZERO Coefficient Inference

« Notations:
 Hidden state attime t X; = (ZERO;, AT;)
 Observation attime t Y; = CO,;

« Definitions (with two-dimensional hidden state be (ZERO;,

AT¢11)):
« Transition probability: P(x;4q1]x¢)
« Emission probability: P(y;|x;)
« Prior distribution of the hidden state: P(x;)
- Posterior distribution of the hidden state: P(x;|y!)
* Assumption:

« The temperature dependency of the model is time independent,
l.e., P(x;41]|x;) and P(y;|x;) are time-invariant




Unsupervised learning of HMM

« Unsupervised training:

« Exact values of true zero coefficients are always hard to know (only with
some prior knowledge).

« Baum-Welch algorithm [10]:

« Find an approximation to the maximum likelihood estimate:

N = argmax P(yp, ya, o yp])  log P(yF|Aiz1) — log P(yE|\) .
’ log P(;ULDH:) |

« A denotes the underlying paramters of the HMM, i.e., transition
probability, emission probability, and prior distribution.

- AW, 1@ 1 denote the sequential parameters estimates

* Notice that we only apply the Baum-Welch algorithm to a subsequence
y! instead of the whole sequence y” for computational simplicity reason




Inference of ZERO coefficient

 Viteribi Decoding:
« Maximum a posterior estimation:

T = argmax P(zT [yT. \)

T

« The temperature change AT can be observed

« Plug sequence ATT into the above function and only
find the best estimate for the sequence ZEROT




Numerical Experiments

Dataset:

Research is performed using the data provided by Senseair

The data is acquired from 10 sensors which are put in a station at highway
E18 in Sweden

Main content of the dataset:

Raw C0O2 measurement

Current temperature

Current time

The sampling interval is 15mins during most time:

However, some samples are missing.

Solution: Dataset is split into 3 subsets to make the data sequences
included synchronized




Numerical Experiments

 Several initial conclusions:

« The ‘true’ zero coefficients in the dataset is within the
range [12434,12637]

« The C0O, measurement in the dataset is within the
range [379ppm, 536ppm]

« We also provide supervised learning approach as the
benchmark of our proposed unsupervised learning
approach



Experiment Setting — Supervised Learning

« High-resolution quantization:

« True zero coefficient is quantized to each integer in the range
[12434,12637]

(0, measurement is also quantized to each integer in the range
[379ppm, 536ppm]

* Quantization of AT

Interval Level Interval Level

[0.1,0.3]
[-1,-0.7] -0.85 [0.3,0.5] 0.4
[-0.7,-0.5] -0.6 [0.5,0.7] 0.6
[-0,5,-0.3] 0.4 [0.7,1] 0.85
[-0.3,-0.1] 0.2 >1 2

[-0.1,0.1] 0



Experiment Results — Supervised learning
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Experiment Setting — Unsupervised
Learning

 Low-resolution

guantization to guarantee a Interval Level Interval Level

fast convergence: (12434, 12485) | zeroy | [12555,12565) | zeros

o [12485,12495) | zerog | [12565,12575) | zerog

* Quantization of true [12495,12505) | zeros | [12575,12637] | zeroig
zero coefficient:

) ) Interval Level Interval Level
« Quantization of C0, 370,410 | ;| [470,480) | Os
measurement: [410, 420) 2o [480, 490) (29

420,430) | Qs | [490,536] | €10

* Quantization of AT

Interval Level Interval Level
(—oo,—0.2) | AT(1) (0.2,400) | AT(2)
[—0.2,0.2] AT(3)




Experiment Results
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Conclusions

The calibration parameter of the NDIR is temperature
dependent

The drift of the NDIR sensor measurement can be fully
described by the drift of the calibration parameter, i.e., true
zero coefficient

The self-calibration problem is formulated into a statistical
inference problem of the true zero coefficient, both
supervised and unsupervised HMM-based approaches are
developed and studied.




