Air quality is invisible and strongly affects our health and performance. Also, air quality in cities changes dramatically from one hour to the next and from one block to another. A dense mesh of mobile miniaturized sensors reporting air quality, in real time, will help us to make informed decisions and in the long run to improve air quality.

Distributed and networked gas sensing is rapidly growing in importance for industrial, safety, and environmental monitoring applications. Optical gas sensors offer the highest sensitivity, stability and specificity in the market, but for most applications, the existing sensors are too bulky and expensive. To enable the broad utilization of high-performance gas sensor networks, there is a critical need for small, low-power and networked gas sensor systems.
Stacks Image 179
Stacks Image 337
Stacks Image 181
Why do we want air sensors everywhere and accessible to everyone?

Discover the story behind ULISSES.

In ULISSES, we will develop an integrated optical gas sensor and the networking technology required to bring it onto the Internet of Things (IoT). ULISSES will deliver the wafer-scale mass production methods necessary to enable production volumes of millions of sensors per year, and thus provide an order of magnitude reduction of sensor module cost.

By leveraging recent breakthroughs of the ULISSES partners on waveguide integrated 2D materials-based photodetectors, 1D nanowire mid-IR emitters, and mid‏-IR waveguide-based gas sensing, we target a three-order-of-magnitude reduction in sensor power consumption, thus permitting maintenance-free battery powered operation for the first time. Finally, we will implement a new edge-computed self-calibration algorithm that leverages node-to-node communications to eliminate the main cost driver of low-cost gas sensor fabrication and maintenance.
Stacks Image 334
Stacks Image 342
Stacks Image 340

A scalable method for the large-area integration of 2D materials

ULISSES project played a big role in the discovering of a new technique for integrating 2D materials into semiconductors, a revolutionary ...

CO2 Sensors in Smart Phones: a ULISSES Webinar

What if you could have access to real-time air quality monitoring on your smart phone ? To learn more about ULISSES work by joining our ...


The ULISSES 5th consortium meeting took place online the 18-19 November 2020. Two years in the project and despite the difficult conditions ...
Please fill this form to send a message to the project responsible.
Hans Martin
Project coordinator
Stationsgatan 12, 82471 Delsbo +46.653.121.29
Kirsten Leufgen
Project manager
Rue du Centre 70 CH-1025 St-Sulpice +41.21.694.04.12
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825272 (ULISSES).